The Canonical Forms of a Lattice Rule

J. N. Lyness

Abstract. Much of the elementary theory of lattice rules may be presented
as an elegant application of classical results. These include Kronecker group
representation theorem and the Hermite and Smith normal forms of integer
matrices. The theory of the canonical form is a case in point. In this paper,
some of this theory is treated in a constructive rather than abstract manner.
A step-by-step approach that parallels the group theory is described, leading
to an algorithm to obtain a canonical form of a rule of prime power order.
The number of possible distinct canonical forms is derived, and this is used to
determine the number of integration lattices having specified invariants.

1. Notation Used to Describe and Classify Lattice Rules

An s-dimensional lattice, A, is a set of points having the property that, when p and
q are members of A, so are p 4+ q and p — . It may be defined by this property,
together with a restriction that there are no points of accumulation. A very familiar
lattice is the unit lattice Ag, which comprises all points p = (p1,p2,...,ps), all of
whose components p; are integers. An integration lattice is a lattice that contains the
unit lattice Ag as a sublattice. A lattice rule Q(A) is a quadrature rule for [0,1)* that
employs the points of AN[0,1)° as an abscissa set A(()) and assigns an equal weight
to each. Some lattice rules are useful for integrating naturally periodic functions.
Other lattice rules may be very inefficient. A representative selection of the literature
on lattice rules may be found in Sloan (1992) and Niederreiter (1992).

The investigation of lattice rules is hampered by two features: first, the large numbers
of different rules that are available, and second, a bewildering lack of uniqueness in
the various convenient representations for investigating rules and for classifying them.

A classical approach to lattices is based on the generator matrix. It is readily shown
that, given any s-dimensional lattice A, there exists a set of s generators aj, as, ..., a;
such that all points

p= Z Aa; A; integer
=1

lie in the lattice, and all lattice points are of this form. The s x s matrix A whose j-th
row is a; (j = 1,2,...,s) is referred to as a generator matrix of the lattice. When



A is an integration lattice, it is readily shown that all elements of A are rational and
that N = |det A|™! is the order of A(Q), the abscissa set of Q(A). An approach
based particularly on the generator matrix (A™1)T of the reciprocal lattice At has
proved fruitful. However, inconvenient aspects of this approach include the absence
of uniqueness of A and the difficulty of proceeding from the matrix A to a sum of
function values.

The standard number theoretic rules of Korobov (1959) are also lattice rules. These
are conventionally expressed in the form

r= T (5) (1.1

Here z € Ao, and f(x) is a periodic continuation of f(x) that coincides with f(x) in
[0,1)°. As is conventional, we denote x modulo Ay by {x}. The components of {x}
are the respective nonnegative fractional parts of the components of x.

Only some lattice rules (those of rank 1) can be expressed in this form. On the other
hand, all lattice rules may be expressed in a natural generalization of form (1.1) that
we refer to as a t-cycle D — Z rule form. This is

Qf = dld2 dZdZ Zf(Z ) (12)

tj1=152=1 Ji=1 =1

where d; are integers and z; € Ag. Associated with this form are two integer matrices.
D = diag{dy,ds,...,d;} is a t x ¢ diagonal matrix, and Z is the ¢ X s matrix whose
J-th row is z;.

It is not difficult to show that this form represents a lattice rule. In fact, it is the rule
of lowest order NV that includes

Ci:{ZZ’/di} i:1,2,...,t.

The lattice A is generated by these ¢; together with the unit vectorseg, £ =1,2,...,5
Note that the m-panel product trapezoidal rule is a lattice rule. One of its s-cycle

D — Z forms has D =ml and Z = 1.

Form (1.2) is not unique. Moreover, it may be repetitive. That is, for some integer k,
it may include only dyd,...d;/k distinct abscissas, each repeated k times.

Definition 1.3 The component z/n, where z = ((1,(a, ..., (s) € Ao is termed proper
when ged((i,Coy-. .y Csyn) = 1 and ¢ = z/n € [0,1)°. (Colloquially, z/n is in its
lowest terms and the point is in the integration region.)

If z/n in (1.1) is not proper, then the form is repetitive. This sort of trivial repetition
is easy to recognize. However, possible repetition in the general t-cycle D — Z form
need not be at all obvious.



It is straightforward to show (see Sloan and Lyness 1989) that a necessary and suf-
ficient condition for the rule form @Qf in (1.2) to be repetitive is that there exist
integers j1,J2,...,J: with j; € [0,d;), not all zero, such that

t

1%
3 ]d' € Ao. (1.4)

=1

One classification of lattice rules based on the t-cycle form relies on the circumstance
that the elements of the abscissa set A(Q)) form a group G under addition modulo
Ag.

In Sloan and Lyness (1989), the Kronecker group representation theorem was applied
to this group to show that a t-cycle nonrepetitive D — Z form exists in which all
elements d; exceed 1, and d;41 | d;, and the z; are linearly independent. Such a
rule form was termed a canonical form. From the nomenclature of group theory,
these particular values of d; are termed invariants, and this particular value of ¢ is
termed the rank of the rule (). The rank and invariants are unique to the lattice, but
the choice of z; in the canonical form is far from unique. However, no constructive
approach for proceeding from a general t-cycle form to a canonical form was made
available at that time.

This paper is concerned with finding a canonical form of a rule defined by a general
t-cycle D — Z form. We shall, in fact, show only how to find nonrepetitive forms
in which d;41 | d;. We may then rely on Corollary 4.6 of Sloan and Lyness (1989)
which assures us that a form that appears to be canonical is indeed canonical if it is
nonrepetitive. (See Theorem 3.1 below.)

2. Decomposition and Reassembly

The accompanying table illustrates the underlying group theory.

G F1 F2 Fs

S1 By By N i
Sy By By N
S, Eap  Ep U

Each entry is an Abelian group. Any group in the initial row (column) is the direct
sum of the other groups in that row (column), and the groups in all but the initial
column are cyclic groups. The table illustrates the decomposition of an Abelian
group GG of order N = pf1p§2 . pfq into the direct sum of cyclic groups Fy. Here



P1, P2, - -, Py are distinct primes, and J3; are positive integers. The first stage is the
decomposition of G into the direct sum

of its Sylow p groups. S;, which is of order pfj, contains all elements of (G whose
order is any integer power of p;. Any noncyclic Abelian group of prime power order
may be decomposed into a direct sum of cyelic groups. Thus,

Si=E10E,®...0L,, (2.2)

where I;  is a cyclic group of order pf”k. These have been arranged in order so that
Bik > Bjk+1. Clearly, 327, B;x = ;. There may be fewer nontrivial groups than
indicated here. The theory is not compromised if some trivial groups FE;j, which
contain only the identity element, are included but ignored. For these, 3;; = 0.

Finally, we apply the result that the direct sum of cyelic groups whose orders are
mutually prime is also a cyclic group. Thus,

Fro=E1 &y D ...0 Ly (2.3)

ﬁ]k

is a cyclic group of order ny, = [1%_, p;’*. Note that, since 3 > 441, it follows that

Nk+1 | ng.

What is illustrated here is the Kronecker decomposition of an Abelian group G into
the direct sum of s cyclic groups Fy; k= 1,2,...,s. The nontrivial values of n; are
termed the invariants of (&, and the number of these is termed the rank of G.

The above remarks comprise at most a schematic for a possible derivation of a famous
theorem in group theory. For our purposes, as we shall see, we do not need group
theory. We may use the schematic to derive a canonical form.

It appears that in our application, the decomposition (2.1) into Sylow p groups is
very simple, as is the recomposition (2.3) of the cyclic groups E;; into Fj. However,
the middle stage (2.2) is nontrivial. The following examples illustrate the first and
third operations. These are justified in the following theorem.

Theorem 2.4 Let n =pq, (p,q) =1, and z,21,22 € Ag. Then

7(%—%6)22273 qlf(‘j]%z—l-jz—z—l—e)

q

J

n
=1 n=1j=

and b . .
— [Nz V/ " —(Jz
3 Zf(‘h—1+‘72—2+e) :zf(f—ue),
=1 jp=1 p q =t \Pq
where z3 = qz1 + pzy. Moreover, if z1/p and z5/q are proper (see Definition (1.3)
above), so is {zs/pq}.



The proof of either part is trivial. Note that there are no minor restrictions. For
example, z; /¢ need not be in its lowest terms. The ¢ is notationally helpful in estab-
lishing extensions of these results.

As an example, we put the following rule into canonical form.

Example 2.5

) (8,1,0) .
~12.15 Z Zf( 1+ 15 ]2)' (2:9)

J1=1j2=1

This may be reexpressed as
1 4 3 3 5
P3PPI (S

Y j1=152=1 j3=1 jy=1

where (5,8,3) . (5,8,3). (8,1,0). (8,1,0)
= 1 1+ 3 J2 3 J3 + 5 Ja-

This may be replaced by

;o (1,0.3) . (2.2,0).  (2,1,0).  (3,1,0).

X = 1 nt 3 J2 3 I3+ 5 Ja-

The sum in (2.5), which contains 180 elements of (¢, has now been reexpressed as the
direct sum of three Sylow p groups, with p = 2, 3, and 5, respectively. Those with
p = 2 and 5 are already cyclic groups. The Sylow 3 group is the direct sum of two
cyclic groups.

The intermediate stage comprises, in general, removing repetition from each of the
Sylow p groups. In this case, it is clear by inspection that the groups of order 3 are
distinct. That is, the sums over j; and j3 include nine distinct terms and not three.
Applying the second part of Theorem 2.4 twice, we find successively

Of = Y S YT

J12=1j3=1j4=1

i
_ f(X”/)
180 J124=1 ja=1
1 & 2 ((31,52,45),  (2,1,0)
= Y37 (%kl—l—#kz . (2.6)
180 2=, 2= 60 3
Hore (11,8,9)  (2,1,0).  (3,1,0)
X// — 127 j12 737 j3 _I_ 757 j47
and (91,52,45) . (2,1,0)
X" = Tﬂl% > 37 j3-



This rule form (2.6) is in canonical form.

The reader may have noticed that the overall result can be significantly altered by
what appears at first sight to be a minor change in the problem. For example, if in
Example 2.5 we replace the second vector (8,1,0) by (7,1,0), we find that the vector
(2,1,0) in x" must be replaced by (1,1,0). The middle stage becomes

Z: 27((27?0)]2+ (17:17)70)]3—|-6) =3 Z 7((17;70)j23—|—6) ]

J2a=1

The new form @ f is repetitive, and () has one invariant instead of two.

A satisfactory procedure to obtain the canonical form cannot rely on the chance
recognition of this sort of circumstance. Subsequent sections are devoted to providing
an algorithm for handling this problem.

3. Rules of Prime Power Order

As a preliminary, we remove some trivial complications. We are interested only in
sequential proper forms. Qf is sequential if dy > dy > ... > d; > 1. The i-th
component is proper if z;/d; is in its lowest terms and ¢; = z;/d; € [0,1)°. The form
is sequential proper when it is sequential and each element is proper. It is a trivial
task to reexpress Q f in a ¢’ cycle D — Z, sequential proper form.

A geometric view is that the rule may be defined by ¢ points ¢y, ¢, ..., c; of orders
dy,dy, ..., d;, respectively. A sequential proper form may be immediately constructed
by reordering the points so that dy > dy ... > d; > 1, and setting z; = d;{c;}.

It still may be repetitive (trivially if ¢; = ¢;41 and d; = d;41).

Theorem 4.5 and its corollary 4.6 in Sloan and Lyness 1989 assure us that a non
repetitive sequential proper rule form in which d;yq | d; is a canonical form. This
is difficult to exploit as it is difficult in general to recognize a non repetitive form.
However, the theory becomes much easier as soon as we restrict ourselves to prime
power forms. In this section we deal with lattices and rule forms of prime power
order; these are t cycle D — Z rule forms in which

dy=p~  j=1,2,....1, (3.1)

where p is a prime. For these, the divisibility condition is naturally satisfied and it
follows:

Theorem 3.1 A prime power sequential proper form is canonical if and only if it is
non repelitive.

In other words, a prevalent situation in which a rule form is both non repetitive and
not canonical does not arise in the prime power order context.



In this section and in sections 4 and 5, we deal with lattices and rule forms of prime
power order only. The problem of finding a canonical form reduces to that of recog-
nizing and removing repetition.

Theorem 3.2 Let Qf and Q'f be prime power t-cycle D — Z forms having the
same prime p, and the same Z matriz. Let D = diag(dy,ds,...,d;) and D' =
diag(p,p,...,p) = pl. Then Qf and Q'f are either both repetitive or both non-
repetitive.

Proof. The condition for Q) f to be repetitive is that there exist integers j; € [0, d;)
1 =1,2,...,t not all zero such that

13
> jizi/di € Ao. (3.3)
=1

Let us suppose that @ f is repetitive and the above j; exist. Let I’ be {¢ | j; # 0}.
Let j;/d; = ~v;/m; in their lowest terms. Then ~; # 0, ¢ € ', and

> vizi/mi € Ao. (3.4)
el
Let p* = max;ep m;. Let I” be {i | m; = p*}. Then multiplying (3.4) by p*~! and
subsuming all integers to the right, we obtain
> vizi/p € Ao (3.5)

eI
This statement implies that ()’ f is repetitive.

The converse is marginally simpler to prove. If we set

Ji=di/p i €1”
=0 ¢

we recover (3.3) from (3.5). O

Recasting this theorem geometrically is revealing.

Corollary 3.6 Any nonrepetitive prime power t-cycle rule form includes precisely
pt — 1 distinct points of order p.

Theorem 3.2 shows that the critical quantities in determining whether a prime power
form is repetitive is the Z matrix. The integers d; play a secondary role. This is
confirmed in the following theorem.

Theorem 3.7 A t-cycle D — 7 form of a prime power rule is repetitive if and only
if the rank of Z modulo p is less than t.



Proof: In view of Theorem 3.2, we need only establish this for a t-cycle D' — Z form
where

D/:diag{p7p7"'7p}'

If this is repetitive, there exist ji, j2,..., s, not all zero such that

This implies that S°I_, j;2z; = pu for some u € Ag; this is the condition that the rank
of Z modulo p is less than ¢. O

The simple results of this section may be readily incorporated into an algorithm that
transforms a general p-power t-cycle D — Z rule form into a sequential, proper, and
non-repetitive form. In the final form, Z either is unimodular or contains a ¢t x ¢
unimodular submatrix.

This algorithm is a variant of a standard triangularization technique.

At the start of the j-th stage, we have
o >dy>.. . >d; > >d > 1

all being powers of p, and z;/d; ¢ = 1...5 — 1 are all proper. Associated with
Z1,Z3, - - ., Z;—1 we have distinct integers 1,29, ...,7;_1, which we term column indices.
Moreover,
Zri,=1 when r=c | ¢=1,2,...,7—1
Zi, =0 when r>c¢ r—=1,2 '

The j-th stage comprises the following:

1. Let z; = ((1,(2,...,(s). Identify a component, say (,, for which (s, p) = 1.
Set i; = (. Replace z; by kz;, where k = (;*(mod d;) and then replace z; by
7z’ = ({1, (3, - -5 C) with ] € [0,d;). (This leaves ¢; = 1.)

2. For i > j, replace z; by z; — Z; yz;. (This leaves Z;, =0; ¢ > j.)
3. Carry out trivial adjustments on Z and D necessary to leave a t’-cycle D — Z

sequential proper form.

Comments:

1. We have by hypothesis that z;/d; is proper. Thus, there is some component of z;,
say the (-th, that is not a multiple of p, and ¢ may be chosen for ¢; in 1.

3. These adjustments include the following:

a. Put any improper z;/d; into proper form z//d..



b. Remove any rows z; for which either z; = 0 or d; = 1; naturally this step reduces
the value of ¢.

c. If necessary, reorder the rows of Z so that the ordering of d; is sequential.

The final Z matrix is an integer matrix. If its columns were permuted in accordance
with the column indices, it would be upper triangular with unit diagonal. Thus, it
contains a ¢ x t unimodular submatrix (corresponding to retaining only the columns
numbered ¢y, 2, ..., %)

Because of this unimodularity, it follows that when ¢ = s, the matrix A = D™'Z is a
generator matrix of A. In general, ¢ < s, and A = D7 comprises the first ¢ rows of
a generator matrix. The remaining s — ¢ rows of the generator matrix may be chosen
as unit vectors ey, the A being the elements of [1, s] not assigned to be column indices.

Finally, note that Z is not unique. In general, the column indices can be chosen in
many ways, and rows having the same d element may be interchanged.

4. Canonical Form Redundancy of Prime Power Forms

In the preceding section, we remarked that the Z matrix is not unique. In this
section, we quantify this lack of uniqueness. We take an r-cycle prime power rule
form @ f which is in canonical form; we see how many distinct reassignments of 7
exist. Initially, we shall have to assume that the result depends on p, D, and Z.
However, it will appear that it simply depends on p and D. Let

U=—— 3. Zf(z“ff) (4.1)
T g1=1j2=1 Jr=1 k=1

be a canonical form of (). Here as before,
nlzngz...Zm>1,

and each n; is a power of p. Also, z; € [0,n;)°, k =1,2,...,r. Note that, since this
is a canonical form, we know that z;/ny is in its lowest terms. Each member of the
set of generators

Cr = Zk/nk (42)

is itself an element of [0, 1)°.

Definition 4.3 g (nq,n2,...,ns N3 Z) is the number of distinct ways of assigning
the Z-matrix so that the rule is the same. (Here zy € [0,n)°.)

Geometrically, this is the number of different point sets ¢y, ¢y, ..., ¢, that can be put
into (4.1) leaving the same rule. These points are € [0,1)*.



It will appear that i, is independent of Z, and we shall later drop the Z in the
definition.

The construction of a formula for i, uses relatively straightforward concepts that
nevertheless must be applied with care. We shall suppose that we assign the vectors
z; (or ¢; = z;/n;) in turn, starting with j = 1 and ending with j = r. Clearly, every
c; has to be a member of the abscissa set. Thus, when we start the j-th stage, we
may limit the choice for ¢’ as follows:

=Y Ne,  Me[on) (4.4)
=1
or ;
N
A VL 15
=Y N (49

It is convenient to drop the { } symbol here. The restriction X! € [0,n;) in (4.4)

simply prevents duplication, since )\fci = ()\f + n;)e;. When assigning ¢, it is clear
that for those values of 7 for which n; < n;, we may choose any available )\5, and
hence there are n; distinct choices for each such A!. However, for those values of i
for which n; > n;, the choice has to be restricted so that z/ in (4.5) turns out to be

in Ag. That is, )\f(n]/nz) must be an integer. Thus, for these values of ¢, there are
only n; distinct choices for each A!. (Geometrically, this recognizes that ¢; is of order
n; and therefore only multiples of ¢; of this order or less may be included.) There
remain values of ¢ for which n; = n;.

To fix ideas, suppose n;41 > n; > n;_1. Then there is only one value )\g remaining to

assign. Since z; itself must be attainable, we can allow )\g to take one of n;(1 —p~!)
distinct values only.

In this case, then, the number of ways of assigning z is the product over 7 of the
number of ways of assigning )\; This gives

7—1 1 T
Hannj(l——)x an
i=1 p i=j+1

Thus, when n;_; > n; > nj;;, whatever the individual values of z;, : = 1,2,...,r,
the number of ways of reassigning z;, without changing any other z; is

T 1

n’ n; (1——,) with A(j) = 1.

! i=1111 p)

In general, we cannot expect all n; to be distinct. Let us suppose

ny > Njp1 = Njqo = ... = Njqw > w1 (46)

and isolate the part of the calculation involving the assignment of ¢%,,...c%, , to
the extent that this is affected by ¢;41...¢;4,. For convenience, we suppress the

10



subscript 7 and denote by n the common value n;41. We need to consider the number
of possibilities for

w
ro_ 1.
¢ = > A

=1

c, = > Mg (4.7)
=1

w
r_ W,
c, = > e
=1

These are assigned in the following order. First, A}, i = 1,2,...,w are assigned. We

need ¢} to be of order n. To ensure this, A} may be chosen in any way so long as at
least one term Alc; is of order n. This is equivalent to choosing a point of order n in a
w-dimensional space. The number of points is n*(1 — p=™). Later in the calculation,
we have to assign ¢},. However, ¢; has already been assigned and is of order n. To
ensure that ncy is independent of nc;, one must ensure that at least one of A¢;,

i =2,3,...,w is of order n. A? is not restricted. The number of points available is
nw(l _ p—w-l—l)‘

Continuing in this way, we find the number of ways of assigning ¢}, £ = 1,2,...,w
to be

nw(l o p—w—l—l—k)‘

We note again that the result does not depend in detail on the rule form. It depends
only on p and on nq,ng,...,n,. When several n; are equal, it depends particularly
on the pattern. It is notationally convenient to define an integer index.

Definition 4.8 With respect to

ny > MNg > N3 > ...>n,, the index
M) =k =7, (4.8)

where k is the smallest integer for which ny < n;.

Theorem 4.9 Given a rule form Qf, the number of nontrivial ways of reassigning
c; so that the rule remains unaltered s

’ 1
I 7masigy (1 - ,)) : (4.9)
=1 p I

This number, large as it is, refers only to the number of ways of reassigning c;. Since
it is independent of the individual choice for the other generators ¢; (¢ # j), we obtain
the total number of nontrivial assignments as the product of r corresponding terms.
Thus, we have the following corollary.

11



Corollary 4.10

=
=

ﬁs(nlvnQV"?ns;N) = n] nl(l _p_/\(])) (410)

5. The Number of Distinct Prime Power Rules Having Specified Invariants

In the preceding section we derived a formula for g (nq,na,...,ns; V). This is the
number of distinct assignments for ¢y, co,...,c, that give rise to the same rule Q).
The formula is the same for any rule having these invariants. We may exploit this
fact to derive a formula for the number of distinct rules vs(ny,ng,...,ns; N) having
these invariants.

Definition 5.1 ps(nq,na,...,ns N) is the number of distinct ways of assigning the
7 matriz so that the rule has these invariants. (Here zj, € [0,n)°.)

Geometrically, this is the number of different point sets ¢y,¢s,..., ¢, that can be
substituted into (4.1) to give a nonrepetitive rule form.

Comparing Definition 5.1 with Definition 4.3 shows that pi, is larger than g . Since
the redundancy is the same for each distinct rule, it follows that

fhs(n1,na, ... ng N)

: 5.2
Ius(nlvn%---,ns;N) ( )

vs(ny,na,...,ng N) =

The determination of fi,; is an exercise of the same type as the determination of i,
but much easier in detail. (The formula does not bring in the pattern of n; explicitly.)

The rule may be defined by an assignment of r points ¢q,¢q,...,¢,. (¢; = z;/n; is a
point of order n;.) jis is the number of distinct point assignments. This is calculated
as [I'2; P;, where P; is the number of ways of choosing ¢; once ¢y, ¢z, and ¢;_; have
already been assigned.

The number of points of order n; is n%(1 — p~*). (This is because when n = p®,
the grid containing n® points contains all points of orders 1,p,...,p*. The number
of order precisely p* is (p*)* — (p*~')*.) However, if ¢y, ¢z,...,¢;_1 have already
been assigned, in view of Theorem 3.2, ¢; must be chosen so that the order p points it
introduces have not been included previously. There are in total p® —1 order p points.
The number of these in the span of ¢;,¢a,...,¢;_q is pP~* — 1. Thus, a proportion
(p~t — 1)/(p* — 1) of the order p points is not available; alternatively stated, a
proportion (p* — p~1)/(p* — 1) = (1 — p=*T/=1)/(1 — p~*) is available. It follows
relatively painlessly that of the ni(1 — p™) points of order n;, only that proportion

12



give rise to available order p points. Thus, ¢; may be chosen in n3(1 — P78 ways.
Hence,

ps = [[P=1ln0-p")
7=1 7=1

= N J[Q—-p""). (5.3)

i=1

The final stage gives the following theorem.

Theorem 5.4

Ls/2] AN AR NG IR WA B
l/s(nlvn?v"'?ns;N) = H ( Y ) H ( /p ) (54)

MNst1—; j=1 (1—1/p0)

Here nqy > ny > ... > n, > 1, and we have set n; =1 for all j € [r+1,s]. The index
A(j) is defined in (4.8).

i=1

With a single exception, v; > 1. The exception is the s-dimensional m copy rule. Here
all the invariants are equal, and the set A(j) comprises the first s positive integers.

The first three cases are
vs(ny, 175 N) = N*TH1 = 1/p) /(1 = 1/p) (5.5)
vs(ni,ny, 175 N) = (N*7H ) (1 = 1/p*)(1 = 1/p" 1) /(1 = 1/p")(1 = 1/p), (5.6)

where
j1=1 when ny>mny>1

=2 when ny =mny > 1,

SN =) (=1 = 1/p?)

s—3,
el o N = R - =y O

where

kh=k =1 when ny > ng >n3y > 1

k1 =3; ks =2 when Ny =mny —=n3>1

k1 =2; ks =1 otherwise.
These are valid only when ny > ny > ... > n, > 1 and each n; is a power of the same
prime p.

These results have been obtained independently by Joe and Hunt (1992). Their gen-
eral approach follows much the same lines as the one here. However, their derivation
of i, is embedded in group theory.

These results resemble a similar result (Lyness and Sgrevik 1989) for v (N), the
number of distinct lattice rules of order N. When N = p?, this is

(38—
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6. A General Formula for v,(n; N)

A simple application of the group decomposition described in Section 2 allows us to
base a general formula for vs(n; N) on the one valid only for prime power rules in
Theorem 5.4. The decomposition (2.1) of G into the direct sum of Sylow p groups
has the property that when G has invariants n((), the invariants n(.5,) of each Sylow
p group is known. The uniqueness of this decomposition leads to the result that the
number of distinct abscissa sets for which ¢ has invariants n(() is the product of the
several corresponding numbers for each component S,,.

Theorem 6.1 Let the prime decomposition of N be
N =p{p ...
Let the invariants ng of a rule Q) of order N be given by

ng = pfm §2k )

P ..pqu kE=1,2,...,s.

Then the number of distinct rules () having these invariants is
T B B Bis.
Vs(nh N2y ...y Mg,y N) = H Vs(pjjlvpjﬂv s 7pjjs; pj])v
j=1
where an explicit expression for each of the factors on the right appears in (5.4) above.

In the statement of the above theorem, we have followed various conventions from
earlier sections. In particular,

Bii 2 By
This theorem is a natural extension of a result in Lyness and Sérevik (1989) to the
effect that the number of distinct lattice rules of order N is given by

v(N) = TL w2

i=1

7. Concluding Remarks

The general thrust of this article is to provide a straightforward and concrete approach
to some of the basic structure of lattice rules. This approach has led through several
areas which are new only in a marginal sense.

For example, spelling out the group theory and applying it as in Section 2 is new.
Something like it was submitted in an earlier version of Sloan and Lyness (1989) but
was excised by the referee. Again, the simple procedure in Section 3 for the reduction
of a prime power rule to canonical form has not appeared before. What will soon be
available is a more general process in which the Smith Normal Form of a generator
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matrix is used to obtain a general canonical form; see Lyness and Keast (1991) and
Langtry (1991). However, in that process the simple underlying geometry is obscured.

The results of Sections 4 to 6 about the number of lattice rules with given invariants
were available to the author in 1989 and promised in 1991. These were subsequently
derived independently by Joe and Hunt (1992). In broad outline, their derivation
parallels the one given here. However, in their work, g, appears as the result of a
nontrivial argument based on group theory, whereas here it is derived in a direct way
as a straightforward redundancy factor in a matrix representation.

This author hopes that this somewhat pedestrian exposition of these ideas will help
enlighten an elegant branch of numerical quadrature.
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